Dispersion measures for grouped univariate data

BEA140 Quantitative Methods - Module 2

Dispersion

In these slides we will look at a number of dispersion measures for grouped univariate data.

Recall that in statistics **dispersion measures** attempt to give us an idea of how *stretched* or *squeezed* a data set is.

Dispersion - Variance (Computation)

We can calculate the **variance** of grouped data as follows:

$$\sigma^{2} = \frac{\sum f_{i}X_{i}^{2} - \frac{(\sum f_{i}X_{i})^{2}}{N}}{N} \quad \text{(population)}$$

$$s^2 = rac{\sum f_i X_i^2 - rac{(\sum f_i X_i)^2}{n}}{n-1}$$
 (sample)

Note: When calculating variance (or standard deviation - see the next slide), it is more efficient and less error prone to use a table.

Dispersion - Variance Example

Going back to the grouped travel time data introduced in the slides on 'central tendency measures for grouped univariate data':

time	frequency (f_i)	class mark (X _i)	$f_i X_i$	X_i^2	$f_i X_i^2$
$0 \le x_i < 10$	1	4.5	4.5	20.25	20.25
$10 \le x_i < 20$	2	14.5	29	210.25	420.5
$20 \le x_i < 30$	3	24.5	73.5	600.25	1800.75
$30 \le x_i < 40$	1	34.5	34.5	1190.25	1190.25
$40 \le x_i < 50$	2	44.5	89	1980.25	3960.5
			$\Sigma f_i X_i = 230.5$		$\Sigma f_i X_i^2 = 7392.25$

$$s^{2} = rac{\sum f_{i}X_{i}^{2} - rac{(\sum f_{i}X_{i})^{2}}{n}}{n-1} = rac{7392.25 - rac{230.5^{2}}{9}}{8} = 186.11 ext{ (to 2 dp)}.$$

(population)
$$\sigma = \sqrt{\sigma^2}$$
 (sample) $s = \sqrt{s^2}$

Sanity Check: A "*rule of thumb*" is that the range is usually somewhere between 3 and 8 times the standard deviation.

I.e. for a population we usually have:

 $3\sigma \leq \text{range} \leq 8\sigma$.

Dispersion - Standard Deviation Example

For our grouped travel time data, we obtained the variance $s^2 = 186.11$ (to 2 dp).

Hence the standard deviation is $s = \sqrt{186.11} = 13.64$ (to 2 dp).

Sanity Check: the range is $\frac{49}{13.64} \approx 3.59$ times the standard deviation, which is inside the 3-8 band for our sanity check.

... that's it for now, thanks for watching!

Don't forget that you can ask questions via:

- (i) face-to-face lectures;
- (ii) workshops or tutorials;
- (iii) consultation hours; or
- (iv) email.